Расчет фундамента на опрокидывание пример - AUGUST-DOM.RU

Расчет фундамента на опрокидывание пример

Расчет фундамента на опрокидывание пример

Основания и фундаменты: Методические указания к практическим занятиям. страница 4

В расчетах по первой группе предельных состояний проводятся также проверки:

а) устойчивости фундамента против опрокидывания

Где Mu — момент опрокидывающих сил относительно оси возможного поворота, проходящей через крайнюю точку подошвы фундамента;

Mz — момент удерживающих сил относительно той же оси;

m — коэффициент условий работы в стадии эксплуатации; для нескальных оснований m = 0.8;

— коэффициент надежности по назначению ( = 1.1);

б) устойчивости фундамента против сдвига по подошве

Где Q — сдвигающая сила, равная сумме проекций сдвигающих сил на направление возможного сдвига;

Qz — удерживающая сила, равная сумме проекций удерживающих сил;

m = 0,9 — коэффициент условий работы;

n = 1,1 — коэффициент надежности.

Удерживающая сила определяется по формуле:

где — коэффициент трения подошвы фундамента по грунту, принимаемый для глин во влажном состоянии 0,25, для сухих глин, суглинков и супесей 0,30, для песков 0,40, для гравийных и галечниковых грунтов 0,50.

Для фундамента, показанного на рисунке 5, имеем:

b = 5; l = 12.5 м; A = 6.25 м 2 .

Объем фундамента: Vф = 2 м 3 .

Объем грунта на уступах фундамента, считая от ЛТР (рис.5б);

Объем воды над фундаментом:

Тогда расчетные веса равны:

Общая расчетная вертикальная нагрузка на уровне подошвы фундамента по (7) равна:

FvI = 10200 + 5728,8 + 178,2+557,5 = 16664,5 кН

Напряжения по подошве равны:

Расчетное сопротивление основания R определяется по формуле 3 при ширине подошвы фундамента b = 5:

Таким образом, проверки (4…6) выполняются.

Проверяем условие устойчивости против опрокидывания (8).

То есть 5820 где µ — коэффициент трения фундамента по грунту.
В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.
Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).
В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.
Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.
При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:

Глины во влажном состоянии

Фундамент: расчет возможного опрокидывания

  • Какой расчет необходим для основания дома?
  • Нужен ли расчет основания частного дома на устойчивость?
  • Определение опрокидывающего момента
  • Определение противодействующего момента

Представить себе опрокинутый фундамент частного дома достаточно сложно. Естественной причиной, по которой возможно опрокидывание небольшого дома, является ветер огромной силы, способный за счет парусности строения опрокинуть его набок. Например, как одиноко стоящую сосну, у которой нет фундамента, но вместо него есть корни.

Рис. 1. Варианты возможных поворотов и смещений фундамента: а – осадка с поворотом, б – осадка с поворотом и смещением, в – сдвиг по подошве.

Какой расчет необходим для основания дома?

Исходя из прямого назначения, которое состоит в равномерной передаче нагрузки сооружения на грунт, необходимо выполнить расчет ширины его опорной части и ее прочность.

Для этого необходимо определить вес сооружения, включая и собственный вес основания.

В расчет на прочность фундамента должны войти и снеговые нагрузки, передающиеся на него от кровли в зимнее время, и вес всего, что будет смонтировано и внесено внутрь помещения (отопительная система, водоснабжение, канализация, мебель и т. п.).

Ветровые нагрузки на невысокое здание в расчет фундамента на прочность не включают. Эти нагрузки учитывают, когда выполняют расчет на прочность такого элемента кровли, как мауэрлат, с помощью которого через стены они передаются на основание дома.

На рис. 1 показаны варианты возможных поворотов и смещений фундамента: а) осадка с поворотом, б) осадка с поворотом и смещением, в) сдвиг по подошве.

Рис. 2. Неправильный расчет прочности фундамента может привести к опрокидыванию всего сооружения.

На мелкозаглубленное основание в зимний период действуют выталкивающие силы, возникающие в результате пучения грунта. Неравномерное распределение этих сил и может привести к потере устойчивости фундамента, показанное на изображении, особенно в том случае, если по каким-либо причинам на основание не было возведено строение. Чтобы в этом случае исключить потерю устойчивости, грунт необходимо защитить от промерзания.

Если произошла потеря устойчивости, когда строительство дома было закончено, следует искать ошибки при расчете требуемой прочности. Но это все же не должно было привести к опрокидыванию всего сооружения, как это показано на рис. 2. Изображен небольшой дом, опрокидывание которого произошло не потому, что не был выполнен соответствующий расчет фундамента. При определении размеров основания и его заглубления, не были учтены физические свойства грунта (на изображении видно, что это песчаный грунт).

Вернуться к оглавлению

Нужен ли расчет основания частного дома на устойчивость?

Фундамент, который под действием внешних сил не опрокинется, не сдвинется в горизонтальной плоскости вместе с грунтом, считают устойчивым. На устойчивость рассчитывают фундаменты таких ответственных элементов, как опоры мостов, заводских труб и т. п.

В отличие от заводских труб расчет фундамента частных домов на опрокидывание можно не выполнять. И причина в том, что эти дома имеют сравнительно небольшую высоту. Если у заводской трубы центр тяжести и равнодействующая силы ветра находятся на значительной высоте от фундамента, в результате чего может образоваться момент достаточный для нарушения устойчивости, то для низкого строения, расчет по этому фактору просто не нужен.

В частном секторе в настоящее время также появляются отдельные строения, которые требуют расчетов их оснований на такое воздействие. Например, ветровые генераторы. На рис. 3 представлен 1 из вариантов основания для такого генератора. Следует обратить внимание на глубину заложения основания. Она явно превышает глубину промерзания грунта. Остальные же размеры на изображении 3 могут служить только для ориентирования и могут отличаться от фактических размеров. Высота вышки – НВ. для надежной работы генератора, зависит от местности, но в среднем ее можно считать равной 20 м.

Вернуться к оглавлению

Определение опрокидывающего момента

Рис. 3. Схема основания ветрового генератора.

На рис. 4 приведена расчетная схема с указанием сил, действующих на фундамент. Основным фактором, создающим опрокидывание, является момент MU. а основным препятствием этому является сила FU. Именно эта составляющая препятствует потере устойчивости.

Равномерно распределенная нагрузка Р представляет собой реакцию грунта на действие силы FU. Сила Qr оказывает влияние на сдвиг в горизонтальной плоскости. При расчете на сдвиг большое значение имеет коэффициент трения кладки по грунту. Для расчета на опрокидывание эту силу не учитывают

Для определения опрокидывающего момента MU необходимо знать скорость ветра и площадь сооружения, на которую он воздействует (парусность). Чтобы обеспечить работу ветрового генератора, необходима минимальная скорость, равная примерно 6-8 м/с. Однако, необходимо учесть, что скорости ветра могут быть значительно больше, поэтому следует рассчитывать на максимально возможную в данном районе скорость. Например, при скорости ветра 10 м/с давление составляет 60 Н/м 2. а при скорости 50 м/с это давление составит 1500 Н/м 2. В таблице № 1 приведены значения, по которым, зная максимальные скорости ветра, можно определить его давление.

Скорость ветра, м/с

Зная скорость ветра V и площадь лопастей SЛ. по таблице 1 определяем соответствующее давление и по этой площади вычисляем силу РЛ. приложенную к краю вышки, то есть на расстоянии НВ от поверхности земли. С учетом глубины h, на которой расположена подошва основания, плечо составит:

Ветер будет действовать и на вышку по всей ее длине. Для определения площади, вначале определим среднее значение ширины вышки, LСР

Рис. 4. Схема сил, действующих на фундамент.

LВ -ширина вышки в верхней ее части;
LН – ширина вышки у основания.

Определим площадь вышки, нормальную к направлению ветра:

и теперь определим общую нагрузку РВ как произведение площади SВ на значение давления из таблицы 1. Эта сила будет приложена посредине высоты вышки.

Теперь можно определить опрокидывающий момент.

Вернуться к оглавлению

Определение противодействующего момента

Для определения этого момента необходимо знать вес вышки со всеми устройствами, вес фундамента и вес грунта на нем. Анализируя рис. 4 можно сделать вывод, что противодействовать будет и грунт, расположенный по бокам по направлению действия опрокидывающего момента. Это действительно так, но только после того, как грунт станет достаточно плотным. А для этого потребуется определенное время. Поэтому в процессе строительства этот противодействующий фактор учитывать нельзя.

Как видно на рис. 4, расстояние от силы FU до точки О (проекция опорного ребра) равно а. Следовательно, условие устойчивости основания ветрового генератора будет:

где k >1- коэффициент надежности.

Как предупреждение следует указать, что приведенный расчет не учитывает многих факторов, которые обязательно учитывают при строительстве высотных зданий, заводских труб, железнодорожных и автомобильных мостов. Поэтому имеет смысл привлечь специалиста даже для установки такого, на первый взгляд, не сложного сооружения, как вышка.

Евгений Дмитриевич Иванов

© Copyright 2014–2017, moifundament.ru

  • работы с фундаментом
  • Армирование
  • Защита
  • Инструменты
  • Монтаж
  • Отделка
  • Раствор
  • Расчет
  • Ремонт
  • Устройство
  • Виды фундамента
  • Ленточный
  • Свайный
  • Столбчатый
  • Плитный
  • Другое
  • О сайте
  • Вопросы эксперту
  • Редакция
  • Контакты
  • Работы с фундаментом
    • Армирование фундамента
    • Защита фундамента
    • Инструменты для фундамента
    • Монтаж фундамента
    • Отделка фундамента
    • Раствор для фундамента
    • Расчет фундамента
    • Ремонт фундамента
    • Устройство фундамента
  • Виды фундамента
    • Ленточный фундамент
    • Свайный фундамент
    • Столбчатый фундамент
    • Плитный фундамент

Расчет фундамента забора на опрокидывание

Эта статья предназначена для застройщика, с целью помочь ему произвести элементарный расчет ленточного фундамента под дом, при отсутствии возможности выполнить расчет фундамента для дома профессионалами. Расчет не претендует на 100% достоверность, но позволяет понять основные принципы как рассчитать фундамент для дома. Мы расскажем как рассчитать кубатуру (объем) фундамента, произведем расчет нагрузки на фундамент и определим геометрические размеры фундамента.

  1. 4-Решение задач на опрокидывание
  2. Как рассчитать фундамент для дома, особенности проектирования.
  3. Сбор значений нагрузок на основание
  4. Учет необходимых параметров
  5. Принцип работы и требования
  6. Нужен ли расчет основания частного дома на устойчивость?
  7. Классификация фундаментов
  8. Заключение
  9. Определение несущей способности грунта
Читайте также  Крепление опалубки ленточного фундамента

4-Решение задач на опрокидывание

При решении задач на опрокидывание рассматривается та предельное положение, в котором тело находится в состоянии неустойчивого равновесия, т. е. когда оно готово перейти из состояния покоя в движение. Всякое незначительное изменение элементов конструкции или сил, действующих на эту конструкцию, ведет к опрокидыванию (вращению) конструкции вокруг некоторой оси, называемой осью опрокидывания, перпендикулярной плоскости чертежа. Условием равновесия такого тела (конструкции) является равенство нулю суммы моментов относительно точки пересечения оси опрокидывания с плоскостью чертежа всех заданных (активных) сил, действующих на тело:

Как рассчитать фундамент для дома, особенности проектирования.

Перейдем непосредственно к вопросам проектирования того или иного типа фундаментов. Расчет столбчатого фундамента заключается в выборе толщины, ширины и величины заглубления отдельных столбов, а также расстояния между ними. При заглублении нужно учитывать также характер грунта и массу самой постройки. Обычно расстояние между его элементами составляет от 1,5 до 2,5 метров, глубина залегания – до 180 см, диаметр столбов – от 40 см.

Если вы выбрали основание для дома из свай, то расчет свайного фундамента стоит начать с его несущих элементов. Они могут быть как заводского изготовления, так и выполненными на месте строительства. Как правило, нагрузка на одну сваю должна составлять около 2 тонн, по этим показателя и рассчитывается их необходимое количество, а также место расположения под будущим домом.

Ленточный фундамент, расчет которого также подчинен показателям, используемым для любых типов основания, имеет свои особенности. Главной задачей будет выбор его ширины, которая должна быть минимум на 10 см больше, чем толщина стен будущей постройки. Его высоту определяют согласно планировочным решениям дома, а глубину залегания выбирают в зависимости от характеристик грунта и наличия подвальных и цокольных этажей.

При расчете плитного фундамента его глубина залегания должна составлять не менее 50 см. Ширину и длину выбирают согласно размеру самой постройки. Желательно в его структуре иметь не менее 2 поясов арматуры, связанной в единую сеть. Основным показателем при расчетах является количество заливочного бетона на единицу площади. По усредненным данным на 1 м3 необходимо 2,5 тонны бетона. Умножив высоту, длину и ширину опалубки на 2,5, получим необходимое его количество.

Сбор значений нагрузок на основание

Первый этап – суммирование масс строительных материалов, которые применяются в конструкции дома:

  • общая площадь несущих стен, а также перегородок, без учета проемов для окон и дверей;
  • перекрытий пола;
  • потолочного перекрытия и потолков;
  • стропильной системы, а также кровельных материалов;
  • внутренних элементов (лестницы и т.п.);
  • наружной отделки и изоляционных материалов;
  • ориентировочно – фундамента и цоколя;
  • строительного крепежа и метизов (гвозди, шпильки, саморезы и т.д.).

Следует подчеркнуть, что предварительно должен быть сделан план дома с максимально точными размерами. Чтобы рассчитать массу применяемого материала, необходимо вычислить площадь, для которой он будет использоваться, умножив на его удельный вес.

Чтобы рассчитать площадь элемента, имеющего форму прямоугольника, перемножьте длины его сторон. Если единица измерения метр, то получится м2. Переведите толщину материала также в метры, умножьте на полученную площадь и получите объем в кубических метрах. Поскольку удельный вес материалов по большей части дается в кг/м3, так будет удобнее работать. Умножив вычисленный объем на показатель удельного веса, вы определите массу материала для данного элемента.

Учет необходимых параметров

Влияние грунтового основания на фундамент

Для обеспечения надежности несущего основания необходимо грамотно и правильно произвести подсчет всех нагрузок от усилий и внешних факторов, влияющих на проектируемое здание.

Для успешного выполнения сбора нагрузок необходимо предусмотреть следующие параметры:

  1. Климатические условия места под застройку.
  2. Тип почвенных грунтов и их структурные особенности.
  3. Уровень горизонтальной линии грунтовых вод.
  4. Особенности конструкции здания, объема и вида материалов для строительства здания.
  5. Вид кровельной конструкции с материалами.

Все эти факторы служат исходными данными составления расчетной несущей способности ленточного фундамента.

Принцип работы и требования

Столбчатый фундамент представляет собой несколько столбов, объединенных с помощью ростверка (горизонтальная обвязка). Ростверк необходим для совместной работы отдельно стоящих конструкций. Чтобы обеспечить устойчивость и предотвратить опрокидывание, столбы заглубляют в землю. Глубина заложения зависит от нагрузки от здания и характеристик грунта.

Несущая способность обеспечивается за счет опирания на грунт и поверхностного трения. В случае с фундаментом небольшой глубины трение возникает незначительное. Лучше всего данный тип конструкции подходит для возведения деревянного или каркасного дома с высотой два и более этажа. Возведение тяжелых каменных домов на таких фундаментах невозможно. Удельная масса стен здания не должна превышать 1000 кг на метр кубический.

Из-за небольшой несущей способности требуется, чтобы уровень грунтовых вод находился глубже подошвы фундамента минимум на 50 см. При наличии на участке слоя насыпных грунтов, их необходимо удалить и заменить песком средней крупности с послойным виброуплотнением (максимальный слой уплотнения 20 см).

Нужен ли расчет основания частного дома на устойчивость?

Фундамент, который под действием внешних сил не опрокинется, не сдвинется в горизонтальной плоскости вместе с грунтом, считают устойчивым. На устойчивость рассчитывают фундаменты таких ответственных элементов, как опоры мостов, заводских труб и т. п.

В отличие от заводских труб расчет фундамента частных домов на опрокидывание можно не выполнять. И причина в том, что эти дома имеют сравнительно небольшую высоту. Если у заводской трубы центр тяжести и равнодействующая силы ветра находятся на значительной высоте от фундамента, в результате чего может образоваться момент достаточный для нарушения устойчивости, то для низкого строения, расчет по этому фактору просто не нужен.

В частном секторе в настоящее время также появляются отдельные строения, которые требуют расчетов их оснований на такое воздействие. Например, ветровые генераторы. На рис. 3 представлен 1 из вариантов основания для такого генератора. Следует обратить внимание на глубину заложения основания. Она явно превышает глубину промерзания грунта. Остальные же размеры на изображении 3 могут служить только для ориентирования и могут отличаться от фактических размеров. Высота вышки – НВ. для надежной работы генератора, зависит от местности, но в среднем ее можно считать равной 20 м.

Классификация фундаментов

Опора надземного основания административного здания, Глендейл (Калифорния)

По глубине заложения

  • на естественных основаниях или искусственных;
  • ;
  • Несущий;
  • Комбинированный, то есть способный, в дополнение к несущим функциям, выполнять ещё и функции сейсмической защиты;
  • Специальный, например, экспериментальные антисейсмические «качающиеся» фундаменты; «плавающие» фундаменты, давление которых равно давлению вынутого грунта и другие.
  • каменный:
    • из природных камней (бут): бутовый, бутобетонный;
    • из искусственных камней: керамический кирпич, бетонный блок.
  • железобетонный:
  • бетонный;
  • ячеистобетонный;
  • деревянный.

По типу конструкции

Фундамент административного здания на ж.б. блоках ФБС>

В инженерной практике получили распространение несколько основных разновидностей фундаментов:

  • Столбчатый — монолитный из бетона, бутобетона или каменной кладки.
    • непосредственно столбчатый
    • «стаканного типа»
  • Ленточный (сборный или монолитный):
    • заглубленный (ниже глубины промерзания);
    • малозаглубленный (выше глубины промерзания);
  • Свайный (сборный или монолитный):
  • на забивных, трубобетонных, буронабивных, набивных, винтовых и других сваях.
  • Свайно-ростверковый
  • Плитный
  • Комбинированный свайно-плитный (КСПФ)

Континуальный фундамент — очень объёмный, большой, чаще всего близкий к форме круга или квадрата, который нельзя рассматривать как отдельно стоящий столбчатый, плитный, ленточный или свайный фундамент. Обычно это: , силосов, бункеров и т. д. См. также опускной колодец.

Заключение

Представленная упрощенная методика расчета фундамента по несущей способности грунта, предназначена для понятия застройщиком общих принципов работы по конструированию и возведению ленточного фундамента при загородном строительстве. Она позволяет с достаточной степенью достоверности определить основные размеры будущего ленточного фундамента. При необходимости, для полного расчета фундамента (плюс расчета по деформации грунтов) необходимо обратиться к квалифицированным специалистам.

  • Пример расчета ленточного фундамента по несущей способности грунта для каркасного дома;
  • Пример расчета ленточного фундамента по несущей способности грунта для дома из кирпича ;
  • Пример расчета ленточного фундамента для дома из газобетона по несущей способности грунта .

Определение несущей способности грунта

Ниже приведена таблица, с помощью которой можно разобраться с несущей способность грунта. Зная, какой тип грунта вы извлекли при пробном бурении, не составит его найти в таблице, и получить больше информации.

Тип почвы Несущая способность
Супесь От 2 до 3 кгс/см2
Щебенистая почва с пылевато -песчаным заполнителем 6 кгс/см2
Плотная глина От 4 до 3 кгс/см2
Щебенистая почва с заполнителем из глины От 4 до 4.5 кгс/см2
Среднеплотная глина От 3 до 5 кгс/см2
Гравийная почва с песчаным заполнителем 5 кгс/см2
Влагонасыщенная глина От 1 до 2 кгс/см2
Гравийная почва с заполнителем из глины От 3.6 до 6 кгс/см2
Пластичная глина От 2 до 3 кгс/см2
Крупный песок Среднеплотный — 5, высокоплотный — 6 кгс/см2
Суглинок От 1.9 до 3 кгс/см2
Средний песок Среднеплотный — 4, высокоплотный — 5 кгс/см2
Песок, супеси, глина, суглинок, зола От 1.5 до 1.9 кгс/см2
Мелкий песок Среднеплотный — 3, высокоплотный — кгс/см2
Сухая пылеватая почва Среднеплотная — 2.5, высокоплотная — 3 кгс/см2
Водонасыщенный песок Среднеплотный — 2, высокоплотный — 3 кгс/см2
Влажная пылеватая почва Среднеплотная — 1.5, высокоплотная 2 кгс/см2
Водонасыщенная пылеватая почва Среднеплотная — 1, высокоплотная — 1.5 кгс/см2

Таблица 1: Расчетное сопротивление разных видов грунтов

Как правильно произвести расчет фундамента на опрокидывание

Точные расчеты на этапе проектирования помогают определить и необходимое количество материалов и составить точную смету. В настоящей статье мы расскажем, как делать расчет фундамента частного дома на опрокидывание.

Типы фундаментов

В настоящее время применяется несколько типов фундаментов для различных видов сооружений и грунтов.

Ленточный вариант наиболее простой – по сути, это сравнительное невысокое основание, построенное под всеми стенами дома. Оно принимает на себя нагрузку и распределяет ее по поверхности земли. Такой фундамент, в свою очередь, опирается на плиты. Обычно сооружается для домов от трех этажей и выше. Причем внутреннее пространство используют для обустройства подвального помещения.

Читайте также  Отделка фундамента пластиковыми панелями

Здесь не требуется специальное оборудование и особо сложные технологии. Кроме того, популярность данной конструкции обусловлена простотой, долговечностью и устойчивостью к разрушению.

Конструкция столбчатого фундамента совершенно другая. Представляет она собой совокупность опор, погруженных в землю на определенное расстояние.

Используется для решетчатой (каркасной) либо бревенчатой постройки до 2-х этажей. Данный вид целесообразен в тех местностях, где на почву не влияют температурные изменения.

Плиточный фундамент представляет собой монолитное основание из железобетона, уложенное на дно котлована уплотненное предварительно:

  • щебнем;
  • песком;
  • бетоном.

Применяют в тяжелых плотных грунтах для больших многоэтажных сооружений (башни водонапорные, ретрансляционные и пр.).

Такой вариант также подойдет для отдельно стоящей дымовой трубы. Существенным недостатком считают высокую стоимость работ и материалов.

Свайный тип фундамента представляет собой конструкцию, состоящую из множества длинных столбов, объединенных поверху либо плитами или балками из бетона. Устраивают такие фундаменты в слабых почвах, неспособных удерживать тяжелые строения. Данный тип основания применяют для строительства многоэтажек.

По СНиПам для всех крыш необходим еще расчет ветровой нагрузки.

Расчет веса дома

Прежде чем приступить к расчетам, нужно узнать ряд параметров.

Так, для метра квадратного стен дома:

  • каркасного, утепленного минеральной ватой, вес удельный составляет от 30 до 50 килограммов на метр квадратный;
  • бревенчатого – 70-100;
  • кирпичного (толщина до 15 см) – от 200 до 270;
  • железобетонного (15 см) – 300-350.
  • чердачных с деревянными балками и утеплителем плотностью 200 кг на метр кубический – 70-100;
  • цокольных деревянных (при тех же параметрах теплоизоляции) – 100-150;
  • железобетонных – 500.
  • из жести – от 20 до 30 килограммов на метр квадратный;
  • рубероида – 30-50;
  • шифера – 40-50;
  • черепицы керамической – 60-80.

Как показывает практика, правильнее всего учитывать максимальные значения, приведенные выше – это позволит обеспечить фундаменту наибольший запас прочности.

Примем, что будущий дом (5 на 8 метров) имеет только один этаж, а стены по высоте достигают 300 см. Общая их длина с учетом внутренней перегородки составит 31 метр. Площадь же – 93 м 2 . Соответственно, вес стен – 25,1 тонны.

Совокупный размер перекрытий (их два – цокольное и чердачное) – 80 м 2 . Масса – 8 тонн.

Кровля для такого стандартного дома (с учетом всех скатов) будет иметь размер 96 метров квадратных и вес 2,88 тысячи килограммов.

Определение площади фундамента и его веса

Для того чтобы выяснить, сможет ли имеющийся на вашем участке грунт выдержать дом, нужно знать и вес дома, и массу собственно фундамента.

Поскольку чаще всего особняки возводятся на ленточных фундаментах, рассмотрим здесь именно этот вариант.

Для кирпичного дома основание углубляют в почву на 150 сантиметров, то есть ниже точки промерзания. К этому также добавляют еще полметра, выступающие над землей. То есть совокупно высота фундамента составляет 200 см.

Затем требуется выяснить длину всей ленты. Для этого периметр прибавляют к протяженности внутренне перегородки. То есть если основание имеет размер 5 на 8 метров и еще одну поперечную перемычку внутри, то в сумме получится 31 м.

Вслед за этим рассчитывается объем. Здесь длина фундамента умножается сначала на его высоту, а затем на ширину. Последнее значение примем за 50 сантиметров. Результат – 31 кубический метр.

Удельный вес бетона на м 3 составляет 2,4 тысячи килограммов. Умножив это значение на 31, получаем массу фундамента – 74,4 тонны.

Результат

Наконец, остается определить опорную площадь для вашего дома. Делается это просто – умножается длина стен фундамента на их ширину. В нашем случае выходит – 15,5 тысячи квадратных сантиметров.

Складываем массу всех конструкций:

  • стены – 25,1 тонны;
  • перекрытия – 8;
  • кровля – 2,88;
  • фундамент – 74,4.

Получается, что весь особняк у нас весит – 110,38 тонны. Этот результат нужно разделить на вышеупомянутую опорную площадь – 15500 см 2 . У нас выйдет, что на один квадратный сантиметр давит 7,12 килограмма.

Остается только свериться с нормами сопротивления грунтов:

  • крупный песок – от 3,5 до 4,5 килограммов на см 2 ;
  • средний песок – 2,5-3,5;
  • мелкий – 2,5-3;
  • глина твердая – 3-6;
  • пластичная – 1-3;
  • каменистые грунты, галька или щебень – 5-6.

Как видно, особняк вышел слишком тяжелый. В этом случае увеличиваем площадь фундамента за счет толщины стен.

Опрокидывание

Опрокидывающему моменту особого внимания уделять не следует, поскольку геометрия частного дома делает его маловероятным.

В целом расчет осуществляется следующим образом – от минимальной для региона ветровой нагрузки, отнимают подъемную силу, воздействующую на крышу. Расчет данных величин следует поручить архитектору.

Определяя силу, при которой может произойти сдвиг строения, учитывают:

  • рельеф местности;
  • наличие деревьев;
  • расположение прочих построек.

Основания и фундаменты: Методические указания к практическим занятиям , страница 4

В расчетах по первой группе предельных состояний проводятся также проверки:

а) устойчивости фундамента против опрокидывания

Mu , (8)

Где Mu — момент опрокидывающих сил относительно оси возможного поворота, проходящей через крайнюю точку подошвы фундамента;

Mz — момент удерживающих сил относительно той же оси;

m — коэффициент условий работы в стадии эксплуатации; для нескальных оснований m = 0.8;

— коэффициент надежности по назначению (= 1.1);

б) устойчивости фундамента против сдвига по подошве

Q Qz, (9)

Где Q — сдвигающая сила, равная сумме проекций сдвигающих сил на направление возможного сдвига;

Qz — удерживающая сила, равная сумме проекций удерживающих сил;

m = 0,9 — коэффициент условий работы;

n = 1,1 — коэффициент надежности.

Удерживающая сила определяется по формуле:

Qz = FvI, (10)

где — коэффициент трения подошвы фундамента по грунту, принимаемый для глин во влажном состоянии 0,25, для сухих глин, суглинков и супесей 0,30, для песков 0,40, для гравийных и галечниковых грунтов 0,50.

Для фундамента, показанного на рисунке 5, имеем:

b = 5; l = 12.5 м; A = 6.25 м 2 .

Объем фундамента: Vф = 2м 3 .

Объем грунта на уступах фундамента, считая от ЛТР (рис.5б);

Vг = 0,5м 3 .

Объем воды над фундаментом:

Vв = Vabcd – (Vф + V г) = 5м 3

Тогда расчетные веса равны:

GIф = 1,1кН;

GIг = 1,2кН;

Gw= 1кН;

Общая расчетная вертикальная нагрузка на уровне подошвы фундамента по (7) равна:

FvI = 10200 + 5728,8 + 178,2+557,5 = 16664,5 кН

MI = MI 0 + FhIhф = 1020 + (1,2= 1020 + 4800 = 5820 кНм

W = м 3

Напряжения по подошве равны:

Pср = кПа;

Pmax = Pср + кПа;

Pmin = PсркПа > 0

Расчетное сопротивление основания R определяется по формуле 3 при ширине подошвы фундамента b = 5:

R = 1.7кПа.

кПа

Таким образом, проверки (4…6) выполняются.

Проверяем условие устойчивости против опрокидывания (8).

Mz=FVI=16664.5

кНм

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Расчет фундаментов. Пример расчета фундамента свайного, ленточного, столбчатого, монолитного, плитного. Расчет основания фундамента: пример. Расчет фундамента на опрокидывание: пример

Использование типовых методов облегчит планирование и расчет фундаментов, пример расчета фундамента упростит вычисления. На основе приведенных в статье рекомендаций можно избежать ошибок при возведении выбранной конструкции (столбчатого, свайного, ленточного или же плитного типа).

Столбчатое основание

Для примера используется одноэтажное строение с параметрами в плане 6×6 м, а также со стенами из бруса 15×15 см (объёмная масса составляет 789 кг/м³), отделанными с внешней стороны вагонкой по рулонной изоляции. Цоколь здания выполнен из бетона: высота – 800 мм и ширина – 200 мм (объёмная масса бетонных материалов – 2099 кг/м³). Он основан на железобетонной балке сечением 20×15 (объёмные показатели ж/б – 2399). Стены имеют высоту 300 см, а шиферная кровля отличается двумя скатами. Цоколь и чердак выполнены из досок, расположенных на балках сечением 15×5, а также теплоизолированы минеральной ватой (объёмная масса изоляции составляет 299 кг).

Читайте также  Фундамент под барбекю своими руками

Зная нормы нагрузок (по СНиП), можно правильно осуществить расчет фундаментов. Пример расчета фундамента позволит быстро провести вычисления для собственного здания.

Нормы нагрузок

  • На цоколь – 149,5 кг/м².
  • На чердак – 75.
  • Норма снежной нагрузки для местности в средней полосе РФ составляет 99 кг/м² относительно площади кровли (в горизонтальном разрезе).
  • На основания по разным осям осуществляют давление разные нагрузки.

Давление по каждой оси

Точные показатели конструктивных и нормативных нагрузок позволяют правильно произвести расчет фундаментов. Пример расчета фундамента приведен для удобства начинающих строителей.

Конструктивное давление по оси «1» и «3» (крайние стены):

  • От сруба стенового перекрытия: 600 х 300 см = 1800 см². Этот показатель умножается на толщину вертикального перекрытия в 20 см (с учетом внешней отделки). Получается: 360 см³ х 799 кг/м³ = 0,28 т.
  • От рандбалки: 20 х 15 х 600 = 1800 см³ х 2399

430 кг.
От цоколя: 20 х 80 х 600 = 960 см³ х 2099

2160 кг.
От цоколя. Подсчитывается суммарная масса всего перекрытия, потом берется 1/4 часть от него.

Лаги со сторонами 5×15 размещены через каждые 500 мм. Их масса составляет 200 см³ х 800 кг/м³ = 1600 кг.

Необходимо определиться с массой напольного перекрытия и подшивки, включенных в расчет фундаментов. Пример расчета фундамента указывает на слой утеплителя толщиной в 3 см.

Объём равен 6 мм х 360 см² = 2160 см³. Далее, значение умножается на 800, итог составит 1700 кг.

Изоляция из минеральной ваты имеет толщину 15 см.

Объёмные показатели равны 15 х 360 = 540 см³. При умножении на плотность 300,01 получаем 1620 кг.

Итого: 1600,0 + 1700,0 + 1600,0 = 4900,0 кг. Все делим на 4, получаем 1,25 т.

1200 кг;

  • От кровли: суммарная масса одного ската (1/2крыши) с учётом массы стропильных балок, решётки и шиферного настила – всего 50 кг/м² х 24 = 1200 кг.
  • Норма нагрузок для столбчатых конструкций (для оси «1» и «3» требуется найти 1/4 часть от общего давления на кровлю) позволяет осуществить расчет свайного фундамента. Пример рассматриваемой конструкции идеально подойдет для набивного строительства.

    • От цоколя: (600,0 х 600,0) /4 = 900,0 х 150,0 кг/м² = 1350,0 кг.
    • От чердака: в 2 раза меньше, нежели от цоколя.
    • От снега: (100 кг/м² х 360 см²) /2 = 1800 кг.

    В итоге: суммарный показатель конструктивных нагрузок составляет 9,2 т, нормативного давления – 4,1. На каждую ось «1» и «3» приходится нагрузка около 13,3 т.

    Конструктивное давление по оси «2» (средняя продольная линия):

    • От сруба стеновых перекрытий, рандбалки и цокольной поверхности нагрузки аналогичны величинам оси «1» и «3»: 3000 + 500 + 2000 = 5500 кг.
    • От цоколя и чердака они имеют двойные показатели: 2600 +2400 = 5000 кг.

    Ниже приведена нормативная нагрузка и расчет основания фундамента. Пример используется в приблизительных значениях:

    • От цоколя: 2800 кг.
    • От чердака: 1400.

    В итоге: суммарный показатель конструктивного давления составляет 10,5 т, нормативных нагрузок – 4,2 т. На ось «2» приходится вес около 14700 кг.

    Давление на оси «А» и «В» (поперечные линии)

    Вычисления производятся с учетом конструктивного веса от сруба стеновых перекрытий, рандбалок и цоколя (3, 0,5 и 2 т). Давление на фундамент по этим стенам составит: 3000 + 500 +2000 = 5500 кг.

    Количество столбов

    Для определения необходимого количества столбов сечением в 0,3 м, учитывается сопротивление грунта (R):

    • При R = 2,50 кг/см² (часто используемый показатель) и опорной площади башмаков 7,06 м² (для простоты расчетов берут меньшее значение – 7 м²), показатель несущей способности одного столба составит: Р = 2,5 х 7 = 1,75 т.
    • Пример расчета столбчатого фундамента для почвы с сопротивлением R = 1,50 принимает следующий вид: Р = 1,5 х 7 = 1,05.
    • При R = 1,0 один столб характеризуется несущей способностью Р = 1,0 х 7 = 0,7.
    • Сопротивление водянистой почвы в 2 раза меньше минимальных значений табличных показателей, составляющих 1,0 кг/см². На глубине 150 см средний показатель составляет 0,55. Несущая способность столба равна Р = 0,6 х 7 = 0,42.

    Для выбранного дома потребуется объем 0,02 м³ железобетона.

    Точки размещения

    • Под стеновые перекрытия: по линиям «1» и «3» с весом

    13,3 т.
    По оси «2» с весом

    14700 кг.
    Под стеновые перекрытия по осям «А» и «В» с весом

    Если потребуется расчет фундамента на опрокидывание, пример вычислений и формулы приведены для больших коттеджей. Для дачных участков они не используются. Особое внимание уделяется распределению нагрузки, которая требует тщательного расчета количества столбов.

    Примеры расчета количества столбов для всех типов грунта

    Для стеновых перекрытий по отрезку «1» и «3»:

    По отрезкам «А» и «В»:

    Всего приблизительно 31 столб. Объемный показатель бетонированного материала составляет 31 х 2 мм³ = 62 см³.

    По отрезкам «А» и «В»

    50 штук. Объемный показатель бетонированного материала

    Ниже можно узнать, как проводится расчет монолитного фундамента. Пример приведен для грунта с табличным показателем R = 1,0. Он имеет следующий вид:

    По отрезкам «А» и «В»

    Итого – 75 столбов. Объемный показатель бетонированного материала

    По отрезкам «А» и «В»

    Итого – 125 столбов. Объемный показатель бетонированного материала

    В первых двух расчетах угловые столбы устанавливаются на пересечении осей, а по продольным линиям – с одинаковым шагом. Под цокольную часть по оголовкам столбов отливают в опалубке железобетонные рандбалки.

    В примере №3 на пересекающихся осях размещаются по 3 столба. Аналогичное количество оснований группируется вдоль осей «1», «2» и «3». Среди строителей подобная технология называется «кусты». На отдельном «кусте» требуется установить общий ж/б оголовок-ростверк с дальнейшим его размещением на столбах, располагающихся на осях «А» и «В» рандбалок.

    Пример №4 позволяет на пересечении и по продольной части линий (1-3) соорудить «кусты» из 4 столбов с дальнейшей установкой на них оголовков-ростверков. По ним размещаются рандбалки под цокольную часть.

    Ленточное основание

    Для сравнения ниже произведен расчет ленточного фундамента. Пример приведен с учетом глубины траншеи 150 см (ширины – 40). Канал будет засыпан песочной смесью на 50 см, дальше он заполнится бетоном на высоту одного метра. Потребуется разработка почвы (1800 см³), укладка песочной фракции (600) и бетонной смеси (1200).

    Из 4-столбчатых оснований для сравнения берется третье.

    Работы буром осуществляются на площади 75 см³ с утилизацией почвы 1,5 кубических метра, или в 12 раз меньше (остальной грунт используется для обратной засыпки). Необходимость в бетонной смеси – 150 см³, или в 8 раз меньше, а в песочной фракции – 100 (она необходима под несущей балки). Возле фундамента создается разведочный шурф, позволяющий узнать состояние почвы. По табличным данным 1 и 2 выбирается сопротивление.

    Важно! В нижних строках эти данные позволят осуществить расчет плитного фундамента – пример указан для всех типов почвы.

    Сопротивление песочного грунта

    Табл. 1

    Сопротивление почвы к основанию, кг/см 3

    Песочная фракция Уровень плотности
    Плотный Среднеплотный
    Крупная 4,49 3,49
    Средняя 3,49 2,49
    Мелкая: маловлажная /мокрая 3-2,49 2
    Пылеватая: маловлажная/мокрая 2,49-1,49 2-1

    Сопротивление глинистой почвы

    Почва Уровень
    пористости
    Сопротивление почвы,
    кг/см 3
    Твердой Пластичной
    Супеси 0,50/0,70 3,0-2,50 2,0-3,0
    Суглинки 0,50-1,0 2,0-3,0 1,0-2,50
    Глинистая почва 0,50-1,0 2,50-6,0 1,0-4,0

    Плитный фундамент

    На первом этапе рассчитывается толщина плиты. Берется сводная масса помещения, включающая вес установки, облицовки и дополнительные нагрузки. По этому показателю и площади плиты в плане рассчитывается давление от помещения на почву без веса основания.

    Вычисляется, какой массы плиты недостает для заданного давления на почву (для мелкого песка этот показатель составит 0,35 кг/см², средней плотности – 0,25, твердых и пластичных супесей – 0,5, твердой глины – 0,5 и пластичной – 0,25).

    Площадь фундамента не должна превышать условия:

    S > Kh × F / Kp × R,

    где S – подошва основы;

    Kh – коэффициент для определения надежности опоры (он составляет 1,2);

    F – суммарный вес всех плит;

    Kp – коэффициент, определяющий условия работ;

    R – сопротивление почвы.

    • Свободная масса здания – 270 000 кг.
    • Параметры в плане – 10х10, или 100 м².
    • Грунт – суглинок влажностью 0,35 кг/см².
    • Плотность армированного железобетона равна 2,7 кг/см³.

    Масса плит отстает на 80 т – это 29 кубов бетонной смеси. На 100 квадратов ее толщина соответствует 29 см, поэтому берется 30.

    Итоговая масса плиты составляет 2,7 х 30 = 81 тонна;

    Общая масса здания с фундаментом – 351.

    Плита имеет толщину 25 см: ее масса равна 67,5 т.

    Получаем: 270 + 67,5 = 337,5 (давление на почву составляет 3,375 т/м²). Этого достаточно для газобетонного дома с плотностью цемента на сжатие В22,5 (марка плит).

    Определение опрокидывания конструкции

    Момент MU определяется с учетом скорости ветра и площади здания, на которую осуществляется воздействие. Дополнительное крепление требуется, если не выполняется следующее условие:

    F – подъемная сила действия ветра на крышу (в приведенном примере она составляет 20,1 кН).

    Q – расчетная минимальная ассиметричная нагрузка (по условию задачи она равна 2785,8 кПа).

    При вычислении параметров важно учитывать местоположение здания, наличие растительности и возведенных рядом конструкций. Большое внимание уделяется погодным и геологическим факторам.

    Приведенные выше показатели используются для наглядности работ. При необходимости самостоятельной постройки здания рекомендуется посоветоваться со специалистами.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: