Для проверки несущей способности свай выполняют - AUGUST-DOM.RU

Для проверки несущей способности свай выполняют

Определение несущей способности свай

Время прочтения: 9 минут

Перед началом капремонта, реставрации, перевооружения, надстройки и прочих запланированных работ на объекте может потребоваться техническое обследование фундамента. В частности, производится определение несущей способности свай. В ходе данных работ выявляется максимально допустимая величина нагрузки, которую способна выдержать свая, погруженная в грунт, при этом не подвергаясь деформациям.

Свайные фундаменты повышают надежность зданий и сооружений, снижают уровень их неравномерных деформаций. Особенно часто они применяются при неблагоприятных инженерно-геологических условиях. Поэтому очень актуальным остается вопрос расчета и оценки несущей способности свай при планировании любых ремонтных, реставрационных и прочих работ.

Любые ошибки на данном этапе приводят к:

закладыванию «запасов» в проектах и удорожанию стоимости проведения работ;

авариям и разрушениям;

убыткам, связанным с простоем производства (для промышленных объектов).

Определение несущей способности сваи — проблематика

Фактор роста нагрузок и напряжений в конструкциях определяет необходимость применения комплексных методов расчета при использовании свайных фундаментов. При этом ключевым является понимание системы «свайный фундамент – грунтовый массив».

Данные о несущей способности конструкции могут быть получены методами теоретического расчета (по материалу) и/или экспериментально-полевых испытаний на месте строительства (по грунту).

К теоретическим способам относят:

методику расчета несущей способности свайного фундамента по СП 24.13330;

методику по Р. Л. Нордлунду;

метод М. Томлинсона.

Однако получение максимально точных результатов возможно только при комплексном подходе к решению вопроса. Это доказывает анализ и сравнение результатов серии аналитических расчетов с данными экспериментально-полевых испытаний (которые будут приведены ниже).

Важно знать!

В свою очередь, это приводит к:

существенным экономическим расходам (35-45%);

увеличению сроков реализации проекта.

Комплексный подход к определению несущей способности фундамента с учетом максимальной несущей способности свай (по грунту и материалу) обеспечивает рациональность и экономичность конструкций.

Краткая сводка по методам исследований

Кратко рассмотрим популярные теоретические подходы к определению несущей способности свай.

Методика расчета несущей способности свайного фундамента по СП 24.13330

В соответствии с данной методикой (которая является сугубо эмпирической), несущую способность Fd следует определять как сумму расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле:

Yc — совокупный коэфф. условий работы;

Ycr — коэфф. сопротивления почвы под опорной подошвой сваи;

R — сопротивление почвы под опорной подошвой сваи;

А — диаметр опорной подошвы;

U — периметр сечения свайного столба;

Ycri — коэфф. условий работы грунта по боковым стенкам сваи;

fi — сопротивление почвы по боковым стенкам;

li — длина боковых поверхностей.

В ходе исследований выявлено, что на диаграммах, построенных по данным СП 24.13330, присутствуют чрезмерные участки, на которых наблюдается линейная зависимость увеличения несущей способности по глубине. Это не соответствует реальности.

Также в ходе исследований выяснилось, что:

Данная методика не учитывает ряд весомых факторов (механические свойства грунтов, напряженно-деформированное состояние массива, история образования грунтов, пр.).

Линейная аппроксимация участков диаграмм не соответствует многочисленным экспериментальным диаграммам, на которых наблюдается снижение угла трения с глубиной.

Методика показывает хорошие результаты при расчете свай в песчаных грунтах средней плотности. Однако не распространяется на рыхлые пески, слабые глинистые грунты, не учитывает работу специфических грунтов.

Прочие теоретические методы

Метод по Р. Л. Нордлунду является полуэмпирическим. Он широко используется в международной практике для расчета несущей способности сваи, расположенной в песчаных грунтах.

K – коэффициент бокового давления грунта в iм слое;

CF – поправочный коэффициент;

Gv ‘ – эффективное напряжение в грунте в iм слое;

δ – угол трения между боковой поверхностью сваи и грунтом;

Nq ‘ – эмпирический коэффициент несущей способности;

t – коэффициент геометрической жесткости сваи.

Метод М. Томлинсона также широко используется при расчете несущей способности свай. Он учитывает параметры недренированного сопротивления сдвигу. Кроме того, допускает, что сопротивление на её боковой поверхности не зависит от напряжения от пригрузки кровлей.

Сa,i – сцепление в iм слое;

As – площадь боковой поверхности сваи в пределах iго слоя грунта;

i – эмпирический коэффициент сцепления;

Cui – недренируемое сцепление.

Также существуют различные методики расчета несущей способности сваи по грунту основания. Для свай–стоек и висячих свай она определяется по-разному.

К экспериментальным способам оценки несущей способности относят методы статического и динамического зондирования, эталонного испытания свай и пр.

Сравнительная таблица результатов

В ходе результатов сопоставительного анализа экспериментально-

аналитических определений были получены данные:

Как видно из таблицы, методика СП 24.13330.2011, применяемая для определения несущей способности сваи, не учитывает работу существенной части ее ствола. Это связано с тем, что свая находится в зоне органоминеральных специфических грунтов. Для них не нормируется боковое сопротивление. Метод расчета Р. Нордлунда, реализованный в ПО RSPile, показал результат, наиболее близкий к данным статических испытаний.

При этом по результатам полевых статических испытаний были получены высокие значения несущей способности свай. Это может объясняться повышенным восприятием внешней нагрузки их нижними частями. Такое распределение усилий в свае и уровней сопротивления грунта недооценивается расчетными методиками.

Вывод

Факторы, которые влияют на несущую способность свай, обусловлены сложным характером взаимодействия. Они предопределяют комплексную механику работы сваи в грунте, которая не поддается математическому описанию.

Полученные схемы имеют существенные расхождения в результатах.

Поэтому они требуют верификации на базе данных, полученных в ходе с натурных испытаний.

В ходе написания статьи использовалась информация из научной статьи. Подробнее с результатами исследований можно ознакомиться здесь.

Определение несущей способности фундамента — техническое обследование

Техническое обследование фундаментов производится для установления степени его износа и технического состояния. Также работы осуществляются с целью определения способности восприятия дополнительных нагрузок.

определения пригодности объекта к эксплуатации;

обоснования стоимости ремонта, реконструкции, перевооружения, перепланировки предприятия;

оценки повреждений конструкций или видимых дефектов;

определения способности фундамента переносить дополнительные нагрузки (в случае необходимости в надстройке или дополнительной отделке);

а также в ряде других случаев (подробнее можно ознакомиться здесь).

Обследование свайного фундамента

Обследование свайного фундамента включает в себя вскрытие ростверков и оголовков свай, а также обеспечения доступа обследовательской партии непосредственно к самим сваям.

В полевых условиях производится определение геометрических параметров свай (с помощью приборов ультразвукового контроля, ИДС-1, пр.). Кроме того, определяются прочностные характеристики бетона свай, а также свайных ростверков. Составляется дефектная ведомость и прочие виды работ.

сбор всех действующих нагрузок на фундамент;

инструментальное обследование — разрушающими, неразрушающими методами, в том числе:

определение прочности и армирования при помощи неразрушающего контроля, оценка на соответствие показателям проекту и исполнительной документации (ультразвуковой контроль, склерометрический метод, пр.);

оценку исправной работы конструкции фундаментов;

забор образцов грунта для дальнейших лабораторных исследований.

В ходе инструментального техобследования особое внимание уделяется грунтам основания. Извлекаются пробы почвенного покрова для лабораторных исследований.

В конечном счете определяются физико–механические свойства грунта, а затем с помощью специального ПО производится расчет несущей способности и всех характеристик, необходимых для дальнейших расчетов. Подробнее с составом работ по техническому обследованию можно ознакомиться здесь.

Получите консультацию экспертов

Определение несущей способности свай — ответственный процесс, который требует экспертного подхода, а также наличия специального оборудования. Любые ошибки при проведении полевых и камеральных работ приводят к увеличению сроков реализации проекта, а также авариям, потере репутации и серьезным убыткам.

Свяжитесь с нами и получите бесплатную консультацию эксперта Гектар Групп. Мы подскажем вам, на что обратить внимание, учитывая особенность конкретного объекта и целей проведения работ. При необходимости поможем с составлением технического задания.

1. оСновнЫЕ положения

1.1. Руководство предназначено для организаций, осуществляющих проектирование и строительство фундаментов мостов и транспортных зданий. Оно охватывает полевые испытания свай, свай-оболочек и свай-столбов 1) всех видов и типоразмеров, испытания грунтов штампами в шурфах котлованах, буровых скважинах, в основании свай-оболочек и свай-столбов.

1) Здесь и далее имеется в виду:

свая — полый или сплошного сечения призматический или цилиндрический элемент с линейный размером поперечного сечения до 0,8 м, погружаемый (до расчетного отказа) в грунт с закрытым или с открытым нижним концом, а также элемент, устанавливаемый в предельно пробуренную скважину и допогружаемый до получения расчетного отказа;

свая-оболочка — полный или заполняемый бетонной смесью (после заглубления в грунт) элемент диаметром болев 0,8 м с открытым нижним концом, погружаемый с периодической выемкой грунта из его полости;

свая-столб — элемент с размером поперечного сечения 0,8 м и более, сооружаемый путем устройства в грунте (или в скальной породе) скважины с уширенной нижней частью или без нее и последующего заполнения ее бетонной смесью, или элемент, устанавливаемый в скважину без принудительного заглубления.

В дальнейшем «свая-оболочка» и «свая-столб» называются соответственно «оболочка» и «столб».

Испытания свай, оболочек и столбов в вечномерзлых и набухающих грунтах, а также испытания таких грунтов штампами должны производится по индивидуальным программам, учитывающим особенности грунтов, требования соответствующих ГОСТов и настоящего Руководства.

Читайте также  Сваи оболочки металлические

Руководство не содержит рекомендаций по анализу результатов испытаний свай, оболочек и столбов горизонтальной нагрузкой, который в каждом конкретном случае должен проводиться с учетом особенностей конструкции фундамента и характера действующих на него нагрузок.

1.2. В зависимости от поставленной цели полевые испытания производят нагрузками следующих видов:

а) динамической нагрузкой — свай и оболочек;

б) статической осевой вдавливающей нагрузкой — свай, оболочек, столбов и штампов;

в) статической горизонтальной нагрузкой — свай, оболочек и столбов;

г) статической осевой выдергивающей нагрузкой — свай, оболочек и столбов.

1.3. Полевые испытания динамической или статической нагрузками свай, оболочек и столбов должны производиться в случае необходимости определения или контроля их несущей способности по грунту и перемещений (по указанию или с ведома организации, проектировавшей фундаменты).

1.4. Несущая способность Ф, тс, сваи, оболочки или столба на вдавливание по результатам их испытаний динамической или статической нагрузкой должна определяться по формуле

где m и кг коэффициенты условий работы и безопасности, принимаемые равными единице;

нормативное значение предельного сопротивления по грунту на вдавливание сваи, оболочки или столба, тс, полученное на основании результатов испытаний согласно п. 1.5 настоящего Руководства 1)

Далее при ссылках слова «настоящего Руководства» опускаются.

Несущая способность Ф, тс, оболочки или столба на вдавливание по результатам испытаний штампом грунтов в их основании определяется по формулам:

а) при скальной породе, крупнообломочном грунте с песчаным заполнителем или твердой глине в основании

б) при прочих грунтах

Ф=RF +U S mf fi li, (3)

где R — расчетное сопротивление грунтового основания центральному (осевому) сжатию, определенному согласно п. 1.10;

F — площадь подошвы оболочки или столба;

U — периметр оболочки или столба;

mf коэффициент условий работа грунта на боковой поверхности оболочки или столба;

fi — расчетное сопротивление i- го слоя грунта на боковой поверхности оболочки или столба;

li толщина i-го слоя грунта, расположенного в пределах от подошвы оболочки или столба до поверхности грунта (с учетом возможной срезки или возможности местного размыва дна водотока при расчетном паводке),

Разбивку толщи грунта на слои и значения mf и fi следует принимать, руководствуясь указаниями главы СНиП по проектированию свайных фундаментов.

1.5. В случаях испытаний свай, оболочек или столбов динамической или статической нагрузками нормативное значение предельного сопротивления на вдавливание следует принимать равным наименьшему предельному сопротивлению Фпр полученному по результатам испытаний.

1.6. Несущую способность Фв, тс, сваи, оболочки или столба на выдергивание по результатам их испытаний следует определять по формуле

(4)

где m — коэффициент условий работы, принимаемый равным 0,6 при глубине погружения на 4 м и более и 0,4 при меньшей глубине;

— нормативное значение предельного сопротивления сваи оболочки или столба на выдергивание, принимаемое равным наименьшему предельному сопротивлению полученному по результатам испытаний;

К г — коэффициент безопасности по грунту, принимаемый равным единице.

1.7. Если вокруг верхней части погруженных свай, оболочек или столбов будет удален грунт в результате последующей планировки территории, разработки котлована или местного размыва дна водотока при расчетном паводке, то необходимо значения несущей способности свай, оболочек и столбов на вдавливание ф и на выдергивание Фв, определенные согласно п.п. 1.4 и 1.6 по результатам их испытаний, уменьшить на разность сил трения грунта на их боковой поверхности, определенных согласно главе СНиП по проектированию свайных фундаментов для двух уровней поверхности грунта: при испытании и после срезки грунта или местного размыва при расчетном паводке.

1.8. Несущую способность на вдавливание свай, оболочек и столбов, работающих в составе фундамента, следует считать обеспеченной при выполнении условия

где Nmax — наибольшее продольное усилие в верхнем сечении сваи, оболочки или столба, тс;

G — вес сваи, оболочки или столба, тс. Для всех свай а также оболочек или столбов, опирающихся на глинистые грунты или скальные породы, вес G следует определять без учета гидростатического взвешивания, а для оболочек или столбов, опирающихся на песчаные грунты – с учетом взвешивания; Ф – несущая способность сваи оболочки или столба на вдавливание, тс, определенная согласно пп. 1.4 и 1.7; Кн и m – коэффициенты надежности и условий работы.

В случае, если элементы фундамента моста, т.е. сваи, оболочки или столбы, опираются на нескальный грунт и фундаментная плита расположена над его поверхностью, значение Кн следует принимать в зависимости от количества элементов в фундаменте: при n =1 ¸ 5 Кн=1,60 (1,75); при n =6 ¸ 10 Кн=1,5 (1,65); при n =11 ¸ 20 Кн=1,45 (1,6); при n>20 Кн=1,25 (1,4). Для фундаментов мостов в остальных случаях, а так же для всех фундаментов зданий и сооружений следует принимать Кн=1,25 (1,4). Приведенные в скобках значения коэффициента надежности следует использовать при условии, что величина Ф определена по результатам испытаний элементов динамической нагрузкой.

Коэффициент условий работы следует принимать равным 1,0 за исключением приведенных ниже случаев.

Если продольное усилие N в элементе фундамента здания или сооружения (кроме мостов) определено с учетом ветровых и крановых конструкций допускается принимать m =1,2.

Если фундамент моста опирается на нескальный грунт и продольное усилие N в элементе определено с учетом (раздельном или в сочетании) нагрузок и воздействий от торможения, горизонтальных поперечных ударов подвижного состава, давления ветра и льда, навала судов, изменение температуры, допускается значение m принимать по табл. 1 в зависимости от наличия на плоской схеме фундамента наклонных элементов или только вертикальных, от количества nг групповых элементов на этой схеме (т.е. от числа их рядов, расположенных перпендикулярно плоскости действия внешней нагрузки) и от степени неравномерности распределения продольных усилий в элементах фундамента, характеризуемой отношением n N = N min / N max наименьшего продольного усилия в верхнем сечении элемента (положительно при сжатии и отрицательно при растяжении) к наибольшему. Для случаев, неохваченных табл. 1, надлежит принимать m =1.

Определение несущей способности сваи

Несущая способность определяется по материалу и грунту. Из двух значений принимается меньшее для расчета. Расчет сваи по прочности производится в соответствии с методами проектирования железобетонных конструкций (ЖБК). Для висячих свай несущая способность по грунту всегда меньше несущей способности по материалу. Для свай-стоек несущая способность по грунту и по материалу примерно одинакова.

Для свай-стоек несущая способность по грунту в соответствии со СНиПом 2.02.03-85 «Свайные фундаменты» определяется по формуле:

,

— несущая способность;

— коэффициент условий работы сваи в грунте;

— расчетное сопротивление грунта;

— площадь поперечного сечения.

Несущая способность висячих свай определяется четырьмя методами:

1) практический – с использованием таблиц СНиПа «Свайные фундаменты»;

3) статического зондирования;

4) испытание свай статической нагрузкой.

5.1.1. Практический метод. Несущая способность несущих свай определяется как сумма двух слагаемых расчетного сопротивления по боковой поверхности и сопротивления под нижним концом сваи:

,

γc – коэффициент условий работы;

γcR – коэффициент, зависящий от вида грунта под нижним концом сваи;

R – расчетное сопротивление грунта под нижним концом сваи;

A – площадь поперечного сечения сваи под нижним концом;

U – периметр сваи;

γcRi – коэффициент условий работы грунта по боковой поверхности сваи;

fi – сопротивление грунта по боковой поверхности;

li – длина боковой поверхности сваи (li2 м).

5.1.2. Динамический метод заключается в определении несущей способности сваи по величине отказа сваи после отдыха.

Отказ – это величина, на которую погружается свая за один удар после отдыха. Висячим сваям, не добивая до проектной отметки, дают отдых (пески – одна неделя, супеси – 2 недели, глина — 3). После отдыха производят добивку сваи до проектной отметки и измеряют отказ сваи. По величине отказа по формуле Герсиванова определяется несущая способность сваи.

Динамический метод испытывается для контроля фактической несущей способности сваи на строительной площадке. Зная параметры сваебойного оборудования, определяется проектный отказ. Если фактический отказ оказывается больше проектного, то фактическая несущая способность сваи меньше проектной и, соответственно, в проект вносятся изменения.

5.1.3. Метод статического зондирования позволяет раздельно определять сопротивление сваи под пятой и сопротивление сваи по боковой поверхности. При статическом зондировании зонд при помощи домкрата вдавливается с постоянной скоростью 0,5 м/мин и измеряется величина сопротивления грунта погружению конуса и величина трения грунта по боковой поверхности. Замеры производят каждые 20 см. затем строят график.

Бывают следующие виды зондов:

Удельное сопротивление грунта под нижним концом сваи:

,

— переходный коэффициент от сопротивления грунта под зондом при его погружении к сопротивлению грунта под забивной сваей;

— среднее значение сопротивления грунта под наконечником зонда на 1 d выше и 4 d ниже нижнего конца сваи.

Среднее удельное сопротивление грунта по боковой поверхности сваи:

(участки первого типа).

Читайте также  Как называется машина которая забивает сваи

(участки второго и третьего типа).

Частное значение предельного сопротивления в месте зондирования:

Несущая способность сваи:

.

5.1.4. Метод испытания свай статической нагрузкой. Несущая способность сваи определяется путем испытания ее аналога статической нагрузкой.

На свая при помощи домкрата прикладывается ступенями нагрузка. Каждая ступень выдерживается до стабилизирующей осадки, затем строят график зависимости осадки от давления. За несущую способность принимается та, при которой осадка составляет 0,2 от предельно допустимой величины осадки.

Проектирование свайных фундаментов ведется в следующей последовательности:

1) определяется глубина заложения подошвы ростверка. Она не зависти от глубины промерзания грунтов, и определяется исключительно конструктивными потребностями;

2) производится выбор типа сваи, длины сваи и поперечного сечения. Тип и вид сваи выбирается исходя из инженерно-геологических условий в зависимости от сваебойного оборудования. Длина сваи выбирается в зависимости от геологических условий так, чтобы свая прорезала слабые грунты и заглублялась в слой прочных грунтов не менее 1 м. в зависимости от длины сваи выбираются размеры поперечного сечения сваи, выбирается тип и вид сваи;

3) определяется несущая способность сваи. Она определяется одним из четырех методов. Расчетная допустимая нагрузка на сваи определяется по формуле:

,

Fd — несущая способность сваи;

γn — коэффициент надежности, зависит от метода определения несущей способности сваи:

γn=1,4 при практическом методе;

γn=1,25 при зондировании;

γn=1,1 при статическом методе;

4) определяется количество свай в фундаменте по формуле:

,

N I — нагрузка по первой группе предельных состояний;

Р – расчетная нагрузка;

5) определяются размеры ростверка и производится его конструирование.

Размеры свай в плане:

Если n получилось 3, 1, то принимаем количество свай 4.

Железобетонные ростверки рассчитываются на продавливание колонной, сваей, на изгиб;

6) производится проверка сваи по несущей способности.

Проверка фактической нагрузки, приходящую на сваю:

— при центрально нагруженных свайных фундаментах фактическая нагрузка на сваю определяется по формуле:

— для внецентренно нагруженных фундаментов:

— сумма квадратов расстояний свайного фундамента до оси каждой сваи.

Если условия (*) не выполняются, то увеличивается количество свай.

7) определение осадки свайного фундамента.

Рассматривается условный фундамент, причем считается, что давление, действующее по подошве свайного фундамента, распределяется равномерно.

(для внецентренно нагруженных).

Если условие не выполняется, то увеличивают длину сваи или расстояние между сваями.

Для проверки несущей способности свай выполняют

Динамические испытания проводятся: а) в ходе изысканий, до начала рабочего проектирования свайного фундамента при забивке пробных свай; б) в процессе забивки рабочих свай; в) при приемке законченных свайных работ. Динамические испытания выполняются:

  • – при проведении изысканий для определения степени неоднородности грунтовых условий в пределах контура проектируемого здания; оценки и сравнения несущей способности пробных свай и свай, принятых в проекте;
  • – в процессе забивки рабочих свай — для получения относительной оценки их несущей способности; выявления несущих слоев грунта и слабых участков свайного поля;
  • – при приемке работ — для определения возможно более достоверных данных о несущей способности забитых свай после их «отдыха».

Динамические испытания свай, как правило, проводятся тем же оборудованием, что и для производственной забивки. Конечным результатом испытания является получение величины отказа свай (погружение сваи от одного удара молотом) и затем определение путем расчета несущей способности сваи. Достоверность полученных отказов зависит от точности определения веса и высоты подъема ударной части молота одиночного действия, веса сваи и наголовника и точности измерения упругих перемещений грунта и сваи после удара.

Измерение отказа лучше всего производить специальными приборами — отказомерами. К числу наиболее известных конструкций относится отказомер П.Р. Тикунова [28]. Точность регистрации упругих перемещений грунта и сваи этим прибором составляет 1 мм. При забивке пробных свай (на стадии изысканий) и при приемке забитых свай (контрольные испытания) динамические испытания проводятся только после «отдыха» свай. Продолжительность «отдыха» принимается: в песчаных грунтах — не менее трех суток, в связных глинистых грунтах — не менее шести суток с момента окончания забивки.

V.3.8.б. Методика динамических испытаний

Согласно СНиП III-Б.6-62, при измерении отказа необходимо следить за тем, чтобы голова сваи была неповрежденной, высота падения ударной части была максимальной для данного типа молота, удар молота был центральным. Для молотов двойного действия число ударов молота и давление пара или воздуха в цилиндре должны соответствовать данным паспорта. Добивка пробных и контрольных свай после «отдыха» должна производиться тем же молотом, что и при забивке.

В процессе проведения динамических испытаний фиксируются:

  • – число ударов молота на каждый метр погружения до заданной проектной отметки;
  • – величина отказов после погружения до заданной проектной отметки;
  • – продолжительность «отдыха»;
  • – коэффициент засасывания, т.е. отношение отказа при забивке к отказу от одного удара при добивке. За расчетный принимается отказ е при добивке.
V.3.8.в. Испытания свай статической нагрузкой

Статические испытания могут назначаться на стадии изысканий, до начала рабочего проектирования, в процессе забивки свай, при приемке забитых свай. Цель их на стадии изысканий — выбор длины и сечения свай и оценка их несущей способности; в процессе забивки и при приемке забитых свай — определение фактической несущей способности свай и сопоставление ее с расчетной, принятой в проекте.

Данные, полученные в результате статических испытаний, отличаются значительно большей достоверностью и точностью, чем при динамических испытаниях. Поэтому, несмотря на большую сложность и трудоемкость статических испытаний по сравнению с динамическими, они назначаются, как правило, при строительстве сложных и крупных объектов с большим числом свай в фундаменте.

Статические и динамические испытания должны проводиться в соответствии с ГОСТ 5686-69 «Сваи и сваи-оболочки. Методы полевых испытаний».

Для проведения статических испытаний при изысканиях забивается несколько пробных свай. Число их и места забивки определяются проектирующей организацией. Испытания в процессе забивки и при приемке производятся на сваях, расположенных в местах с наихудшими для данного объекта грунтовыми условиями или давших наибольшие отказы при забивке. Испытания должны начинаться по истечении трех суток после забивки в песчаные грунты и шести суток в связные глинистые грунты.

V.3.8.г. Методика статических испытаний и оборудование

Статические испытания сваи заключаются в постепенном нагружении сваи статической нагрузкой и измерениями осадок свай от этой нагрузки. Различают величины критической и предельной нагрузок. При критической нагрузке происходит резкое и незатухающее увеличение осадки сваи (свая «проваливается»), превышающее осадку от предшествующей ступени нагрузки более чем в 5 раз. Предельная нагрузка принимается на одну ступень меньше критической. График зависимости осадки от нагрузки представлен на рис. V-19.

Величина ступеней нагрузки назначается в размере 1/10—1/15 ожидаемой величины предельной нагрузки. Для большей точности испытаний иногда пользуются более дифференцированной шкалой нагрузок, а именно от 1/2,5—1/5 в начале испытаний до 1/10—1/15 на последующих ступенях нагрузки.

Наблюдают за осадками сваи после каждой ступени нагрузки до затухания осадок, которое характеризуется величиной осадки не более 0,1 мм за последние два часа наблюдений. Измерения осадок выполняются с интервалами: в первый час наблюдений — через 15 мин, во второй — через 30 мин и далее — через 1 ч до полного затухания осадок. Величина осадки фиксируется с точностью до 0,1 мм прогибомерами или точным нивелированием.

После доведения нагрузки до критической осуществляется разгрузка так же ступенями, но равными удвоенным ступеням загрузки. Данные, наблюдений за осадками свай записываются в журнал статического испытания сваи.

Выбор оборудования для статических испытаний зависит от принятого способа нагружения сваи. В настоящее время известны следующие способы нагружения: укладка груза на платформу, устанавливаемую на сваю, использование усилия гидравлических домкратов, применение натяжных муфт или лебедок.

Преимущественное распространение получил способ с использованием гидравлических домкратов — наименее трудоемкий и наиболее дешевый. Общий вид установки с гидравлическим домкратом конструкции ГПИ Фундаментпроект представлен на рис. V-20. Для статических испытаний обычно используются гидравлические домкраты грузоподъемностью 50, 100 и 200 т.

Реперная система предназначена для крепления приборов, измеряющих осадки испытываемой сваи. Она состоит из стоек и ригелей. Стойки (балки, швеллеры, тумбы) закапываются в землю не менее чем на 0,5 м. При испытании железобетонных свай при кустовом или ленточном расположении их в качестве стоек используются те же сваи из куста или ряда. Ригели (металлические уголки 75×75×8 мм) прикрепляются к стойкам хомутами. К ригелям струбцинами крепится прогибомер. На каждую испытываемую сваю устанавливаются два прогибомера.

Схема размещения испытываемых и анкерных свай, а также реперной системы показана на рис. V-21.

Документация на проведение статических испытаний свай включает в себя:

  • – техническое задание, разрабатываемое проектной организацией;
  • – проект производства работ;
  • – план строительной площадки с указанием на нем испытываемых и анкерных свай;
  • – геологический разрез площадки и физико-механическая характеристика грунтов.

Смородинов М.И. Справочник по общестроительным работам. Основания и фундаменты

Читайте также  Как рассчитать сколько нужно винтовых свай

Испытания свай

Статические испытания свай

Статические испытания свай выполняются в соответствии с требованиями:

— ГОСТ 5686-94 «Грунты. Методы полевых испытаний сваями»;

— СНиП 2.02.03-85 «Свайные фундаменты»;

— СП 50-102-2003 «Проектирование и устройство свайных фундаментов»

Перед началом производства работ нашими специалистами разрабатывается и согласовывается «Программа проведения испытаний свай». Сами статические испытания свай можно проводить на разных этапах строительства и проектирования — на стадии изысканий, до начала рабочего проектирования, в процессе погружения свай, при приемке погруженных свай.

В зависимости от этапа будут различаться и цели статических испытаний свай:

— На стадии изысканий статические испытания свай проводят с целью выбора длины и сечения свай и оценки их несущей способности;

— В процессе погружения и при выемки погруженных свай целью статических испытаний будет определение соответствия фактической несущей способности свай и сопоставление ее с расчетной, принятой в проекте.

Полученные при статических испытаниях свай данные, как правило, отличаются существенно большей точностью и достоверностью, чем при динамических испытаниях свай.

Вместе с тем статические испытания свай более сложны, дороги и трудоемки по сравнению с динамическими и в связи с этим назначаются в основном при строительстве сложных и крупных объектов с большим числом свай в фундаменте

Технология проведения статических испытаний свай

Проведение статических испытаний свай начинается с определения проектирующей организацией числа испытуемых свай и мест их забивки. После этого в определенных местах погружается несколько пробных свай. Испытания в процессе забивки и при приемке производятся на сваях, расположенных в местах с наихудшими для данного объекта грунтовыми условиями или давших наибольшие отказы при забивке.

Перед испытаниями сваи должны отстояться для того, чтобы восстановились структурные связи в грунтах и, соответственно, свая показала реальные результаты. Время т.н. «отдыха» сваи перед испытаниями согласно ГОСТ составляет:

1 день — в случае если под острием сваи крупнообломочные грунты, или плотные пески

3 дня — для песчаных грунтов

6 дней — для глины и разнородных грунтов

10 дней — для водонасыщенных песков.

В большинстве случаев время «отдыха» сваи — 6 дней с момента забивки.

Испытываемую сваю нагружают ступенями, переход к следующей ступени нагружения осуществляют после условной стабилизации осадки на предыдущей ступени. Для измерения осадки испытываемой сваи устанавливают прогибомеры часового типа с ценой деления 0,01 мм или с электронным циферблатом.

Перед нагружением сваи берут нулевые отсчеты по всем приборам. На каждой ступени нагружения сваи снимают отсчеты по всем приборам.

За критерий условной стабилизации деформации принимают скорость осадки сваи на данной ступени нагружения, не превышающую 0,1 мм за последние 60 или 120 мин наблюдений.

За частное значение предельного сопротивления испытываемой сваи принимается нагрузка, при которой прекращено нагружение сваи.

Схемы установок для проведения статического испытания свай:


Установка с гидравлическим домкратом, системой балок и анкерными сваями


Установка с грузовой платформой, служащей упором для гидравлического домкрата

1 — испытываемая свая

2 — анкеpная свая

3 — pепеpная система с пpогибомеpами

4 — домкpат с манометpом

5 — система упоpов, балок

8 — гpуз (упоp для домкpата)

Способы статического испытания свай

Выбор оборудования для статических испытаний сваи зависит от принятого способа нагружения.

В настоящее время известны следующие способы нагружения:

— укладка груза на платформу, устанавливаемую на сваю;

— использование усилия гидравлических домкратов;

— использование собственного веса СВУ.

Преимущественное распространение получил способ статического испытания свай с использованием гидравлических домкратов — наименее трудоемкий и наиболее недорогой. Специалисты нашей компании чаще всего используют для нагружения сваи собственный вес сваевдавливающей установки, что позволяет нашим клиентам экономить до 50% средств на испытаниях.

Динамические испытания свай

Работы, связанные с сооружением свайного фундамента не обходятся без испытания имеющихся свай. Помимо статического испытания свай, производят также испытания свай динамической нагрузкой. По мере погружения сваи возрастает сопротивление грунта проникновению сваи. Внешне это проявляется в том, что с заглублением острия в грунт уменьшается отказ сваи, т. е. величина ее погружения от одного удара молотом. Динамические испытания свай основаны на связи между энергией удара молота при забивке сваи в грунт и несущей способностью сваи.

При пробной забивке динамические испытания свай позволяют назначить рациональную длину свай и проверить соответствие фактической и расчетной величин отказов свай. При забивке рабочих свай наблюдения за изменениями отказов позволяют выявить несущие слои грунта, дать относительную оценку несущей способности забитых свай и выявить слабые участки свайного поля. Во время проведения динамического испытания свай составляются графики, которые описывают изменения состояния сваи в зависимости от приложенных к ней нагрузок.

Динамические испытание свай имеют некоторые преимущества перед статическим испытанием свай — они более мобильны, не требует высоких затрат, применяется к любым видам свай независимо от их несущей способности. Но при этом динамический метод испытаний свай может дать завышенную величину несущей способности свай. Это возможно, если свая при забивке прорезает толщу относительно плотных грунтов и входит острием в более слабый слой, обладающий большей сжимаемостью. Необходимо отметить, что в этом случае и статический метод испытания свай может ввести в заблуждение. Дело в том, что в таких грунтовых условиях при длительном действии на сваю статической нагрузки, вследствие деформаций ползучести происходит перераспределение нагрузки и значительно повышается ее доля, приходящаяся на острие сваи, что вызывает перегрузку слабого грунта основания. Поэтому при многослойных напластованиях необходимо, чтобы острия свай входили в более прочный подстилающий слой грунта.

В глинистых грунтах (однородных в пределах фундамента здания) при забивке свай на одинаковую глубину величины отказов как в конце забивки, так и во времени, могут сильно отличаться для разных свай, что может натолкнуть на неправильное заключение о их весьма различной несущей способности. Однако в этом случае результаты динамических испытаний свай сравнивают с результатами статических испытаний, которые показывают одинаковый уровень сопротивляемости свай.

Динамический метод испытания свай непригоден также и при сооружении свайных фундаментов на сыпучих основаниях из песка, строительного мусора, бытовых свалках и т.п.

Технология проведения динамических испытаний свай

Как правило, динамические испытания свай проводятся трижды. Первоначально проводят динамические испытания имеющихся свай перед началом основных свайных работ и даже до начала работы над проектом свайного фундамента. Это делается с целью определить уровнень неоднородности грунта в месте будущего строительства.

Следующий этап динамических испытаний проводят в момент забивки основных свай в грунт — чтобы оценить их несущие качества и возможности, а также для определения несущих слоев в грунте и слабых участков в зоне, где забиваются сваи. По завершению свайных работ сваи проходят еще одно динамическое испытание для более достоверного определения несущих способностей свай после того как они «отдохнули». Длительность «отдыха» свай в связных глинистых грунтах приближается к шести суткам, а в песчаных грунтах составляет не менее трех суток со времени окончания забивки.

При забивке рабочих свай наблюдения за изменениями отказов позволяют выявить несущие слои грунта, дать относительную оценку несущей способности забитых свай и выявить слабые участки свайного поля. Контрольная добивка свай выявляет изменения несущей способности свай после «отдыха». Она должна выполняться тем же молотом, которым велась забивка свай. В глинистых грунтах ее следует производить короткими сериями ударов, чтобы вновь не нарушить структуру грунта

Динамические испытания свай проводят с помощью того же оборудования, которое применяется для проведения основных свайных работ. После всех испытаний получают величину отказа свай, равную степени погружения сваи в грунт после одного удара. Далее производятся необходимые расчеты для определения несущей способности забитой сваи. При этом точность полученных данных отказов полностью зависит от точности вычисления высоты молота и веса его ударной части, а также веса самой сваи и наголовника. Не следует также забывать и о точности замеров упругих перемещений сваи и грунтов после удара.

Для измерения отказа при динамических испытаниях свай в основном применяется нивелир. Точность фиксируемых упругих перемещений сваи и грунта нивелиром равна 1 мм. Во время забивки пробных свай и при контрольных испытаниях (приемка забитых свай) динамические испытания свай принято проводить лишь после «отдыха» свай. Условные обозначения:

Для правильного определения несущей способности сваи динамическим методом важное значение имеет достаточно точное измерение высоты падения молота. Для этого обычно пользуются рейкой с четкими делениями через 5 см, прикрепляемой к молоту или наголовнику сваи. Таким способом визуально можно определить высоту падения молота с требуемой точностью до 2 см.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: